CHEM 1F92 Midterm 1A October 2003

Name	ID #	SCORES
When is your CHEM 1E		1
when is your CHEWI IF	92 lad: Day	2
Time	Section (A or B)	3.
Which of the following C starting CHEM 1F92? (Chemistry courses have you taken before Circle any that apply.)	4
OAC Chemistry	Grade 12U Chemistry	6
Brock CHEM 1P00	Other (specify)	_ 7
		8
INSTRUCTIONS:		9
Write all answers on t A periodic table is pro	his examination paper.	10
Nonprogrammable cal	culators are allowed (no organizers!)	11
No other alds are allow	wed.	12
FORMULAS:		13
$E = hv = hc/\lambda$		14
Avogadro's number = 6.0	22 x 10 ²³	15.
Planck's Constant: $h = 6.6$	526 x 10 ⁻³⁴ J·s	16
Speed of light: $c = 2.998$	x 10 ⁸ m/s	10
Energy of an electron in th	he nth orbital of a hydrogen atom:	17
$E = -R_H/n^2$		18
$R_{\rm H}$ (Rydberg constant) = 2	2.18 x 10 ⁻¹⁸ J	19
S	HOW ALL WORK!	20
		21
		TOTAL

1. (5 marks) Convert 5.35 g/cm³ to lb/ft³. There are 454 grams in 1 pound, 12 inches in a foot, and 2.54 centimeters in an inch.

	Δ	newor•
2. (4 marks)	Round the following calculations to the proper number	r of significant figures:
(a)	$0.238 \ge 9726 \div 19.99 = 115.79730$	Answer:
(b)	75.1 + 445.7 + 646 = 1166.8	Answer:
(c) (2	marks) (988.8 - 929.93) ÷ 499.96 = 0.11774942	Answer:
3. (2 marks)	Calculate the value of the following expression: $\frac{(6.626 \times 10^{-34}) (2.998 \times 10^8)}{(453) \left(\frac{1}{10^9}\right)}$ ANSWE	R:
4. (3 marks)	Give formulas for the following compounds:	
	magnesium bromide	
	iron(II) phosphate	
	potassium carbonate	
5. (3 marks)	Name the following compounds:	
	HNO ₂	
	P ₄ S ₅	
	Cu ₂ SO ₄	

CHEM 1F92 Midterm 1A October 2003

6. (6 marks) Balance the following equations with the lowest whole number coefficients:

 $Cr(OH)_3 +$	$\underline{\qquad} H_2SO_4 \ \rightarrow$	$_$ Cr ₂ (SO ₄) ₃	+ H ₂ O
 _ S ₈ +	$\0 O_2 \rightarrow$	SO ₂	
 $_{-}C_{4}H_{10} +$	$\O_2 \rightarrow$	CO ₂ +	H_2O

7. (3 marks) Write balanced net ionic equations for the following reactions.

 $AgNO_3(aq) + NaCl(aq) \rightarrow AgCl(s) + NaNO_3(aq)$

Answer: _____

 $2 \text{ HClO}_4 (aq) + \text{Ba}(\text{OH})_2 (aq) \rightarrow \text{Ba}(\text{ClO}_4)_2 (aq) + 2 \text{ H}_2\text{O} (l)$

Answer: _____

 HNO_2 (aq) + NaOH (aq) \rightarrow NaNO₂ (aq) + H₂O (l)

Answer:

8. (10 marks) An organic compound contains 26.88 % C, 2.256 % H, and 70.87 % F. What is its empirical formula?

Answer:	

9. (10 marks) Barium chloride reacts with silver nitrate to produce a silver chloride precipitate according to the following equation:

 $BaCl_2(aq) + 2 AgNO_3(aq) \rightarrow Ba(NO_3)_2(aq) + 2 AgCl(s)$ If 38.95 mL of BaCl₂ solution produces 0.7308 g of AgCl, what is the molarity of the BaCl₂ solution?

Answer:

10. (2 marks) "No two electrons in an atom can have the same four quantum numbers" is a statement called

A. The Pauli Exclusion Principle

B. Hund's Rule

C. The Schroedinger Equation

D. Dalton's Atomic Theory

E. The Heisenberg Uncertainty Principle

Answer (give letter): _____

11. (6 marks) The ion ${}^{99}_{44}$ x²⁺ contains _____ protons, _____ electrons, and _____

neutrons. Its mass number is ______ and its atomic number is ______. The element X is ______.

12. (3 marks) Show the ground-state electronic configuration for a carbon atom.

2p 2s 1s

13. (4 marks) An atom of vanadium has _____ unpaired electrons. The V^{3+} ion has _____ unpaired electrons.

14. (4 marks) Use periodic trends and predict which of the following species has the largest radius and which the smallest.

Ne Mg²⁺ Cl⁻ F⁻

Answers: I

Largest radius.

Smallest radius.

15. (4 marks) Use periodic trends and predict which of the following atoms has the largest 1st ionization energy and which the smallest.

Ca Na K Mg

Answers: Largest 1st I.E.

Answer:

Smallest 1st I.E.

16. (2 marks) Which element will show an unusually large jump in ionization energy values between I_3 and I_4 , the third and fourth ionization energies?

Na Mg Al Si P

17. (2 marks) Which of the following equations represents the second ionization energy of oxygen?

A.	O^{2-}	(g)	$\rightarrow 0$	(g)	+2	e ⁻	(g)
1 1.	0	(6)	, 0	0		-	10/

B.
$$O^{2-}(g) \to O^{-}(g) + e^{-}(g)$$

C. $O(g) \rightarrow O^{2+}(g) + 2e^{-}(g)$

- D. $O(g) + 2e^{-}(g) \rightarrow O^{2-}(g)$
- E. $O^+(g) \to O^{2+}(g) + e^-(g)$

Answer (give letter): _____

Br in Br ₂ O.	Answer:
N in HNO ₃ .	Answer:
Mn in $Ba(MnO_4)_2$.	Answer:
Fe in Na_3FeO_4 .	Answer:

19. (2 marks) Identify the oxidizing and reducing agent in the following reaction:

$$2 \text{ Al} + 3 \text{ F}_2 \rightarrow 2 \text{ AlF}_3$$

Oxidizing agent _____

Reducing agent _____

20. (8 marks) Consider the reaction of ammonia with oxygen to produce nitrogen oxide and water according to the equation below. If 5 moles of NH_3 and 8 moles of O_2 are allowed to react, what is the limiting reactant? How many moles (if any) of each species are present after the reaction? Show your reasoning clearly!

 $4 \text{ NH}_3(g) + 5 \text{ O}_2(g) \rightarrow 4 \text{ NO}(g) + 6 \text{ H}_2\text{O}(g)$

Limiting reactant: _____

Moles NH₃ remaining after reaction:

Moles O₂ remaining after reaction:

Moles NO produced: _____

Moles H₂O produced: _____

CHEM 1F92 Midterm 1A October 2003

21. (13 marks) Complete this paragraph with the words and phrases given in the box below:

All acids have certain properties in common. When dissolved in water they produce a _____

taste, they turn ______ from blue to red, and they react with metals such as iron to liberate

_____. Water solutions of ______, on the other hand, taste ______, turn litmus from

______to _____, and produce a _______sensation when rubbed between the

fingers.

As long as we are dealing with water solutions of these substances, we can use the ______ definition of an acid and a base, which states that an acid is any substance that releases ______, while a base is any substance that releases ______. The _____ definition eliminates the need for water in the definition by defining acid-base reactions in terms of a ______ from an acid to base, regardless of solvent.

Use these word	ls and phrases to fill in the blanks	in the paragraph above.
Arrhenius	hydrogen ions	pH paper
bases	hydronium ions	proton transfer
bitter	hydroxide ions	red
Bronsted	less	slippery
blue	Lewis	smaller
electron pair	litmus	sour
greater hydrogen gas	proton	zinc

PEF	lod	IC T	ABLI Brock		: THE	ELE	EME	NTS	1	Atomic Atomic	Number Weight	Î	3 Li 6.941	Ļ	Elemer	ıt symbo	10
1A 1																	8A 18
-																	2
Η	2A											3A	4A	5A	6A	AT	He
1.008	7											13	14	15	16	17	4.003
3	4											5	9	7	8	6	10
Li	Be											B	U	Z	0	H	Ne
6.941	9.012											10.81	12.01	14.01	16.00	19.00	20.18
11	12											13	14	15	16	17	18
Na	Mg	3B	4B	SB	6B	7B	8B	8B	8B	118	2B	AI	Si:	Ρ	S	CI	Ar
22.99	24.31	3	4	2	9	7	8	6	10	11	12	26.98	28.09	30.97	32.07	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	Λ	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.59	74.92	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	qN	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
85.47	87.62	88.91	91.22	92.91	95.94	. (88)	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.6	126.9	131.3
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La*	JH	Ta	M	Re	Os	Ir	Pt	Au	Hg	IT	Pb	Bi	Po	At	Rn
132.9	137.3	138.9	178.5	180.9	183.9	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	(210)	(210)	222
87	88	89	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra	Ac^{**}	Rf	Db	ad N	Bh	Hs	Mt									
(223)	(226)	(257)	(257)	(260)	(263)	(262)	(265)	(266)									
				58	59	60	61	62	63	64	65	66	67	68	69	70	71
*Lanth	anide S	eries		Ce	Pr	pN	Pm	Sm	Eu	Gd	dT	Dy	Ho	E.	Tm	Ab	Lu
				140.1	140.9	144.24	(145)	150.4	152.0	157.25	158.9	162.5	164.9	167.3	168.9	173.0	175.0

**Actinide Series

(260)

Lr

No (259)

Md (258)

Fm (257)

Es

Cf (251)

Bk (247)

Cm (247)

Am (243)

Pu (242)

Np (237)

U 238.0

Pa (231)

Th 232.0